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Abstract 

Image segmentation on automotive radar imagery is the key technique for identifying the passable and impassable regions for 
path planning in autonomous or assistive driving. The availability of consecutive frames which measure the driving scene shifted 
along with the timeline enables improved segmentation on radar imagery. The frame fusion on automotive radar map is 
implemented as a two-step procedure: 1) The pixel-to-pixel mapping between consecutive frames is achieved based on an 
inertial measurement unit (IMU); 2) The information fusion of consecutive frames is achieved based on the Kalman filter. The 
frame fusion operation leads to correct classification of the initially ‘unknown” regions and overall improves the confidence of 
classification compared to single frame segmentation. The segmentation results with frame fusion are presented and compared 
with the results of single frame segmentation to demonstrate the segmentation improvement.

1 Introduction 

Microwave radar has been widely used as the primary 
automotive sensor system to sense the surrounding 
environment and serves for advanced driver assistance 
systems (ADAS) and autonomous driving (AD) in modern 
vehicles [1]. The automotive sensors generally include 
automotive radar, LiDAR, camera, and ultrasonic sensors. 
Automotive radar has the following advantages compared with 
the other sensors: 1) it is the most reliable one which can 
mitigate the effects of the environment such as bad weather, 
light conditions, etc; 2) it can directly measure the range and 
velocity of objects. Therefore, information extraction of the 
driving environment based on data from the automotive radar 
can give solid support to achieve the functions like path 
planning and further benefit the AD system. The identification 
of passable and impassable regions is the key information for 
path planning, and image segmentation is the general approach 
for achieving this.  
 
Image segmentation technique has been widely utilized on 
optical imagery obtained from camera [2], as well as the 
LiDAR point cloud data [3]. Recent advances in the 
development of high-resolution mm-wave and low-THz radar 
allow to deliver high-resolution imagery where the contrast 
between “clutter” regions can be used for image segmentation. 
Thus, the full scene reconstruction purely based on automotive 
radar data was considered in our previous research in [4, 5] 
where a customized hybrid segmentation method has been 
proposed that fits the format of automotive radar data. 
Although methodology in [4, 5] shows good potential for 
image segmentation of automotive radar imagery in the single 
radar frame (scanned or beamformed single scene map), its 
performance can be further improved by fusing information 
from several consecutive frames. This paper presents two 

techniques to facilitate improved image segmentation with 
frame fusion: 1) pixel mapping between consecutive frames, 
which is the key step for further frame information fusion, and 
2) use of the Kalman filter to combine the information of 
several frames. 
 
The approach for achieving the geometric pixel mapping 
between consecutive frames is tracking the region movement 
based on the GPS and real-time driving information measured 
by the inertial measurement unit (IMU). This is the 
straightforward way of achieving frame registration. The 
information fusion of multiple frames can be further developed 
by the Kalman filter, which is the general approach that utilizes 
a series of measurements observed over time to improve the 
performance of a single measurement [6]. The frame fusion is 
therefore achieved by combining frame registration based on 
IMU measurement, and Kalman filter approaches in this paper. 

 
2 Single Frame Image Segmentation Overview 

The previous implementation of single frame segmentation [5] 
is composed of two main steps: first, pre-segmentation using 
image processing methods, edge detection in particular, where 
different clutter regions in the radar map are resolved and 
provide a contrast in terms of distribution parameters; the 
second step is the region classification based on multi-variate 
Gaussian distribution (MGD) classifier, which uses 
distribution parameters as the input. When the whole scene 
within the image is resolved (distributed clutter returns from 
regions of different classes are above the noise floor), the 
segmentation leads to a full scene reconstruction of radar map, 
so that each pixel is labelled as belonging to one of the chosen 
classes, such as asphalt, grass, objects, shadows, as well as the 
‘unknown area’, which is a class used to describe low 
confidence of classification in case of high confusion or data 
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corruption. In such case probability of correct classification 
can be increased if the same region is tracked and re-classified 
within a number of consecutive frames.   
 
In this paper, the proposed method for achieving frame fusion 
is demonstrated for improving the classification of initially 
‘unknown’ class region, however, the method is equally 
applicable to any class to increase the confidence of correct 
classification.  
 
3 Frame Registration of Automotive Radar 
Imagery using IMU 

When considering the automotive radar application in the 
world coordinate system, the consecutive frames of the radar 
map detect the scene shifts along with the movement of the 
vehicle platform. To achieve the frame registration, the 
geometric transformation between radar maps needs to be 
understood to achieve pixel mapping, which can be 
represented mathematically as: 

 

                     (1) 

 
where  and  are the coordinates in previous and 

current radar frame,  and  are the scale factors along x 

and y axis,  and  are the shear factors along x and y 

axis,  specifies the rotation angle and  and  are the 
position shifts. When considering the registration between PPI 
(plan position indicator) radar maps, the scale and shear 
transformations are not expected since the radar maps are 
shifted and rotated under the same world coordinate. Therefore, 
the parameters of 𝑠!, 𝑠", 𝑠ℎ!, and 𝑠ℎ" can be assumed as “1”. 
The remaining position shifts and the rotation angle are 
obtained from the synchronous measurement of the IMU setup 
as described below. 
 
The IMU system utilized for our automotive radar 
measurement platform is the Spatial FOG unit from Advanced 
Navigation [7], which is a GPS-aided inertial navigation 
system. The installation of IMU and radar systems used for 
data collection is presented in Fig. 1, which is placed on the 
roof of the vehicle since it requires to be mounted close to the 
centre of gravity of the vehicle. The sensor axes are well 
aligned with the axes of the vehicle. The radar systems are rear 
installed in the vehicle as shown in Fig. 1 (b), which includes 
79 GHz FMCW mechanical scanning radar as well as MIMO 
radar. Here, we only use the data collected by FMCW radar for 
this part of research and the details of the characteristic of the 
radar system and data collection have been given in [5]. 
 
The output of the IMU setup includes: 1) precise GPS 
information which includes latitude, longitude, and height; 2) 
the real-time driving information which includes velocity, 
angular velocity, acceleration, and orientation. All the 
information is synchronized with our consecutive radar frame 
by timestamp. First of all, the required rotation angle 𝜃 can be 

calculated by subtracting the output orientations of two 
considered frames by 𝜃 = 𝑜# − 𝑜 , where 𝑜#  and 𝑜  are the 
orientations of current and previous frames. 

 
Due to the fact that the output velocity and acceleration 
information are calculated based on GPS information, the GPS 
positions are considered to be the more precise way of 
estimating the position shifts between frames. This means we 
need to transfer the information of latitude, longitude into 
cartesian coordinates using the following equations: 

 

'
𝑥$ = 𝑅 ∙ cos	(𝑙𝑎𝑡) ∙ cos	(𝑙𝑜𝑛)
𝑦$ = 𝑅 ∙ cos	(𝑙𝑎𝑡) ∙ sin	(𝑙𝑜𝑛)                       (2) 

 
where (𝑥$ , 𝑦$) is the cartesian coordinate of the vehicle which 
corresponds to the original point of the radar map (at the range 
of 0). 𝑅 = 6371 m is the approximate radius of the earth, 𝑙𝑎𝑡 
and 𝑙𝑜𝑛 are the latitude and longitude values output by the 
IMU system.  
 
Assuming that the original point of another map is calculated 
using the same method as (𝑥$# , 𝑦$#), then the position shift can 
be represented as: 

 

'
𝑡! = 𝑥$ − 𝑥$#
𝑡" = 𝑦$ − 𝑦$#

                                     (3)    

   
The pixel-to-pixel mapping between every two frames can 
therefore be obtained using Eq. (1) based on the obtained 
position shifts 𝑡!, 𝑡", and the rotation angle 𝜃. 
 
The instance of the implementation of pixel mapping between 
two consecutive radar maps is given in Fig. 2, where the 
stationary car visible in the radar map as a tetragon region of 
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Fig. 1 (a) The installation of IMU setup on roof of the car; 
(b) The installation of radar systems utilized for data 
collection. 
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high return, highlighted by the red bounding box in the frame 
of Fig. 2 (b), is to be projected into the next frame. The 
projected area coincides well with the position of the car in the 
consecutive frame. Similarly, all regions in the first (seed) 
frame will be projected to the next consecutive frames, so that 
once classified the information can be used to improve the 
probability of correct classification. 
 

 
 
4 Frame Fusion based on Kalman Filter 

Kalman filter is an algorithm that provides an estimation of the 
current system state based on previous measurement and 
current measurement. The general mathematical definition of 
Kalman filter is: 

                        (3) 

where  is a predicted system state at time step ;  is 
an estimated system state at time step ; F is the transition 
matrix between  and ;  is the input from the 
system at time step ; G is the control input model which is 
applied to the control vector ; and  is the process noise 
of disturbance. 
 
In our application, Kalman filter is utilized to mitigate the error 
caused by the feature variation of radar frames by considering 
the classification information of multiple frames. The 
segmentation performance of CF can be improved according 
to the estimation of PFs that the system state we considered 
here is the region class weights contributed from multiple 
frames.   
 
The definition of the number of required frames can be fine-
tuned based on the overlap ratio between frames which 
depends on the velocity of the host vehicle, the frame rate of 
radar measurement, and the maximum detection range of radar 
map. The more detailed mathematical estimation of the 
number of overlap frames in different scenarios will be  given 
in the next publication [8]. As an example with the driving 
speed of 40 km/h and the frame rate of 10 frame/s, region 
tracking on four previous frames is still possible within the 25 

m detection range. Therefore in this paper, we would use four 
frames just to illustrate the approach, though the measured data 
were recorded with the velocity of the host vehicle of 5 m/s, 
the detection range of 25 m and the limited frame rate of the 
demonstrator of 1 frame/s (1 Hz scan rate). 
 
The frame fusion is done based on the voting procedure of the 
region class weights, and the mathematical representation of 
the fusion over four frames (as shown in Fig. 3) can be given 
as: 

                (4) 

Here,  is the final predicted weights for the classification 
of the ROI in current frame (CF) which is at the time step of 

.  are the weights obtained from 
the output of MGD classifier in the single frame segmentation 
of CF, where ‘a, g, s, o’ stand for asphalt, grass, shadows, and 
objects [5]. , , and  are the region class 
weights obtained based on the classification results of the 
projected regions in the previous frames (PFs) which are at the 
time steps of . The calculation details for 

obtaining , , and  are going to be discussed 
in the frame fusion implementation based on Fig. 3 below.  
 

 
The value of G in Eq. (3) determines the amount of 
contribution from the current single frame which is assumed 
as “1” here for simply the calculation. The  combine the 
noises due to the various impact factors such as the error 
produced in frame registration and single frame segmentation. 
The discussion on these errors is out of the scope of this paper 
and  is assumed as ‘0’ here.  
 
The example of frame fusion implementation to identify the 
‘unknown area’ in CF is shown in Fig. 3. The calculation of 
the variables of , , and  is the key stage for 
achieving frame fusion which includes the geometric 
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Fig. 2 The instance of projected region obtained based on 
IMU information. (a) the optical image; (b) the current 
frame with ROI; (c) the previous frame with projected area 
which is produced by pixel mapping of the ROI in (b). 
 

(c) 

(a) (b) 

Fig. 3 Example of the identification of unknown area using 
frame fusion. (a) optical image of the scene; (b) radar map; 
(c) tracking of the unknown areas in the segmented maps of 
PF1-PF3. 
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transformation using IMU information and the class weight 
calculation based on the segmentation results of PFs. We will 
use the approach to re-classify the ‘unknown area’ in CF in Fig 
3(c) on the left, whose pixel coordinate set can be represented 
as . When simplifying the geometric transformation given 
in Eq. (1) as function of 𝑓(𝐶), the coordinates of projected 
regions in PF1-PF3 (red contoured projected regions in Fig. 3 
(c)) can be calculated as: 

 

?
𝐶%&' = 𝑓(&)%&'(𝐶(&)
𝐶%&* = 𝑓%&')%&*(𝐶%&')
𝐶%&+ = 𝑓%&*)%&+(𝐶%&*)

                        (5) 

 
The projected region might include multiple area classes, and 
the region class weights obtained from PFx can be represented 
as:  

                            (6) 

where each item of  is calculated as: 

                                       (7) 

Here  is the number of pixels which belong to class i in the 
projected region, and  is the number of pixels of the 
projected region. 
 
The final predicted weights for the classification of the ROI 
can therefore be calculated by adding all the weights 
contributed from multiple frames of CF, PF1-PF3 as: 

 
𝒙A𝒏,𝒏 = [𝑝., 𝑝/, 𝑝0, 𝑝1]                           (8) 

 
The area class corresponding to the highest-class weight is 
selected as the final classification result of the ‘unknown area’.  
 

5 Results of Frame Fusion on Automotive 
Radar Map Segmentation 

In this section, we estimate the performance of segmentation 
results obtained with and without frame fusion based on both 
segmentation examples and Jaccard similarity coefficients 
(JSCs) [5] estimation.  
 
Fig. 4 and 5 show the segmentation results of two frames, in 
which insets of (c) and (d) are the segmentation results 
obtained from the algorithm with and without frame fusion. In 
Fig. 4(c), area A is the rougher tarmac on the car park area 
according to the ground truth optical image and is identified as 
an ‘unknown area’ since its backscattering return pdf shows 
low bias to the finer tarmac on the driving path. Area B is a 
tree on the lawn area along the road. Both of them are correctly 
classified as ‘asphalt’ and ‘objects’ respectively in Fig. 4 (d) 
after frame fusion. For region C, although most of it is 
correctly identified as ‘grass’ in the frame fusion, the 
extremely small tree areas are merged into grass due to the 
under-segmentation caused by single frame segmentation [5]. 
This also leads to the limitation of our frame fusion method 

that it highly relies on the segmentation result of single frame 
segmentation.  

 

 
Fig. 5(c) shows that the regions of D and E are identified as 
‘unknown areas’ since they are extended objects - low brick 
fences along the radar signal illumination direction, which 
means a lower power return than from the other objects. 
Finally, they are correctly identified as ‘objects’ based on the 
frame fusion and can be used to plan the passable path, though 
further processing steps, such as Hough transform should be 
used to highlight linearly extended objects (curbs) for further 
path planning strategy. The region F in Fig. 5 (b) is a metal 
manhole cover which has higher backscattering than tarmac 
according to the observation through consecutive frames. It 
has been correctly identified as the passable region in Fig. 5(d) 
after frame fusion. 
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Fig. 4 First instance of segmentation before and after frame 
fusion. (a) is the optical imagery shows the driving scene; 
(b) is the radar map; (c) is the segmented map obtained from 
single frame segmentation; (d) is the segmented map 
obtained after frame fusion operation. 
 

Fig. 5 Second instance of segmentation results before and 
after frame fusion. The caption definitions are the same with 
Fig. 4. 
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The JSC estimation on both segmentation results based on the 
mathematical definition [5]: 

                         (8) 

Here,  is the number of correctly classified pixels 
overlapping with the labelled data regions of that class and 

 is the total number of pixels of the corresponding class 
in the labelled data. As shown in Table 1, the JSCs of areas of 
asphalt, grass, and objects are significantly improved after 
using frame fusion. However, the segmentation of shadows 
has not been improved due to the fact that they are segmented 
using the thresholding strategy instead of MGD classifier due 
to their particular nature of being a radar noise, rather than 
physical return. 

 
Table 1. The comparison of JSCs before and after frame fusion 
implementation. 

Area classes Asphalt Grass Objects Shadows 
JSCs of single frame 0.69 0.7 0.68 0.83 

JSCs after frame fusion 0.77 0.86 0.72 0.83 
 

6 Conclusion 

This paper proposes the frame fusion technique on consecutive 
radar maps, which is the extension work of single frame 
segmentation algorithm developed in [5]. The proposed 
method includes two stages: 1) the pixel mapping between 
consecutive frames based on the IMU measurement; 2) the 
information fusion of multiple frames using Kalman filter. The 
proposed method is implemented on our dataset to improve the 
identification of the ‘unknown areas’ which cannot be 
classified purely based on the feature extracted from single 
frame. The segmentation performance is estimated visually 
and mathematically that frame fusion results show significant 
improvement compared with the results obtained by single 
frame segmentation. The proposed segmentation with frame 
fusion is applicable to automotive radar imagery, where 
MIMO and SAR can be used to deliver high-resolution maps 
of the scene around the vehicle. 
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