

Radar basics in calibration

Challenges, Impediments, and Development Commitments

Yang Xiao

Contents

- General picture of a typical radar system
- Radar propagation model
 - Radar range equation
 - Transmission and reflection property
 - Advantage of radar system in automotive field
- FMCW radar basics (range measurement and doppler velocity)
- MIMO (angle estimation)

Diagram of typical radar system

Basic theoretical study on signal properties.

Design of transmitter and receiver various on different types of radar systems according to application.

Radar range equation

$$P_r = \frac{P_t G^2 \lambda^2 \sigma}{(4\pi)^3 R^4 L_{loss}} = \boxed{\frac{P_t G_t}{4\pi R^2} \cdot \sigma \cdot \frac{1}{4\pi R^2}} \cdot \frac{\lambda^2 G_r}{4\pi} \cdot \frac{1}{L_{loss}}$$

- Power density at the target place;
- Reflected power at the target;
- Reflected power at the destination;
- Effective antenna aperture $A_w = \frac{\lambda^2 G_r}{4\pi}$
- P_t: Transmit power;
- G_t , G_r : Antenna gain of transmitter and receiver;
- λ: Wavelength of radar signal;
- σ: RCS or target;
- R: Range between radar and target;
- L_{loss} : Other propagation losses.

Typical frequency bands of automotive radar: 77GHz, 94GHz, 150GHz, 300 GHz.

Antenna

Target

$$L_{loss} = L_a L_c L_o L_x$$

- L_a : Atmospheric propagation loss;
- L_c: Loss due to sensor cover material;
- L_o : Loss due to obstructions (E.g. contaminants on sensor cover, rain drops);
- L_x : Loss cause by the other factors in the path.

One-way atmospheric attenuation as a function of frequency at sea level and at 9150 meters altitude.

- [1] https://www.radartutorial.eu/01.basics/The%20Radar%20Range%20Equation.en.html
- [2] https://www.radartutorial.eu/06.antennas/an07.en.htm

Theory of transmission and reflection estimation on multi-layer material

Electric field of transmission process and reflection when radar signal through a multiple-layer structure material:

Definitions of parameters:

Parameters	Definitions		
E_{i+}, E_{i-}, E_{i+}'	Incident, reflected and transmitted electric field		
n_i	Refractive index of medium i		
l_i	Thickness of medium i		
ω	Angular frequency of radar signal		
μ_i	Permeability		
$oldsymbol{\delta}_i$	Conductivity		
$oldsymbol{arepsilon}_0$	Vacuum permittivity		
$oldsymbol{arepsilon}_i$	Relative permittivity of the material		
$oldsymbol{ heta}_i$	Incident ray angle		

Reflection coefficient

$$r_i = \frac{\eta_{i+1}cos\theta_i - \eta_icos\theta_{i+1}}{\eta_{i+1}cos\theta_i + \eta_icos\theta_{i+1}}$$

Wave impedance: $\eta_i = \sqrt{\frac{j\omega\mu_i}{\delta_i + j\omega\varepsilon_0\varepsilon_i}}$

Wave number: $k_i = \omega \sqrt{\varepsilon_0 \varepsilon_i \mu_i}$

Transmission coefficient

$$t_i = \frac{2\eta_{i+1}cos\theta_i}{\eta_{i+1}cos\theta_i + \eta_icos\theta_{i+1}}$$

Snell's law.

Propagation matrix:

$$\begin{bmatrix} E_{0+} \\ E_{0-} \end{bmatrix} = \frac{1}{t_0} \begin{bmatrix} 1 & r_0 \\ r_0 & 1 \end{bmatrix} \begin{bmatrix} e^{jkl_1} & 0 \\ 0 & e^{-jkl_1} \end{bmatrix} \dots \frac{1}{t_n} \begin{bmatrix} 1 & r_n \\ r_n & 1 \end{bmatrix} \begin{bmatrix} e^{jkl_n} & 0 \\ 0 & e^{-jkl_n} \end{bmatrix} \begin{bmatrix} E'_{n+} \\ 0 \end{bmatrix} = \begin{bmatrix} M_1 & M_3 \\ M_2 & M_4 \end{bmatrix} \begin{bmatrix} E'_{n+} \\ 0 \end{bmatrix}$$

Transmissivity:
$$T = \left| \frac{E'_{n+}}{E_{0+}} \right|^2 = \left| \frac{1}{M_1} \right|^2$$

Reflectivity:
$$R = \left| \frac{E_{0-}}{E_{0+}} \right|^2 = \left| \frac{M_2}{M_1} \right|^2$$

Transmissivity and reflectivity as function of incident angle and thickness of material. (One example of vehicle bumper material)

Computed transmissivity and reflectivity

Y. Xiao, F. Norouzian, E. G. Hoare, E. Marchetti, M. Gashinova and M. Cherniakov, "Modeling and Experiment Verification of Transmissivity of Low-THz Radar Signal Through Vehicle Infrastructure," in *IEEE Sensors Journal*, vol. 20, no. 15, pp. 8483-8496, 1 Aug.1, 2020, doi: 10.1109/JSEN.2020.2982984...

Comparison between computed values and measured values

Advantage of radar system

(a) camera; (b) Lidar; (c) radar

L. Daniel, D. Phippen, E. Hoare, A. Stove, M. Cherniakov and M. Gashinova, "Low-THz radar, lidar and optical imaging through artificially generated fog," International. Conference on Radar Systems (Radar 2017), Belfast, 2017, pp. 1-4, doi: 10.1049/cp.2017.0369. Yang Xiao UTR 2GT

FMCW basics (How to get range and velocity information)

Range estimation:
$$R = \frac{c\Delta t}{2} = \frac{c\Delta f}{2K}$$

Velocity estimation:

Doppler frequency shift between up- and down chirps which is caused by target movement:

$$f_D = \frac{\Delta f_1 - \Delta f_2}{2}$$

Velocity of object: $\nu = \frac{cf_D}{2f_0}$

- Frequency between transmitted and received signal determines range.
- Frequency difference between chirps of received signal determines velocity.

The transmitted signal:

$$S_t = A_t exp(j\pi(2f_0t + Kt^2))$$

The received signal:

$$S_r = A_r exp \left(j\pi (2f_0(t + \Delta t) + K(t + \Delta t)^2 + \Phi_d) \right)$$

The mixed signal:

$$S_m = A_m exp \left(j\pi (2f_0 t + 2K\Delta tt + K\Delta t^2 + \Phi_d) \right)$$

- A_t is the amplitude of transmitted signal;
- A_r is the amplitude of received signal;
- A_m is the amplitude of mixed signal;
- f_0 is the carrier frequency of radar signal;
- K is the slope of modulated signal, $K = \frac{F_t}{T_t}$, where F_t is the bandwidth and T_t is the duration of half chirp (or one chirp, depends on the chirp pattern);
- ϕ_d Doppler phase shift;
- $\Delta \ddot{f} = K \Delta t$ is the intermediate frequency (IF) signal extracted for distance estimation;

2D-FFT (How to get range and velocity in signal processing level)

Stack the range profile of multiple chirps as a matrix for Doppler FFT.

Range-velocity map: Grid with higher intensity value indicate an object.

Why ambiguous radial velocity?

• Maximum unambiguous radial velocity: $v_{max} = \frac{cf_{PRF}}{4f_{tx}}$, f_{PRF} is the pulse reptation frequency and f_{tx} is the frequency of transmitted signal..

https://www.skyradar.com/blog/video-fft-plot-of-a-pulsed-doppler-radar-implemented-with-skyradars-nextgen-radar-and-freescopes

One example of mechanical scanning imaging radar

Table 5.1 79 GHz FMCW imaging radar parameters.

Parameter	Value	Units
Centre Frequency	78.5	GHz
Bandwidth	5	GHz
Transmit Power	13	dBm
PRF/PRI	232/4.3	Hz/ms
Chirp Duration	1	ms
Az. Beam Width (2-way)	1.7	0
El. Beam Width (2-way)	7.2	0
Antenna Gain	30	dBi
Polarization	VV	

Narrow the azimuth beam width

- Mechanically changing radiation direction of antenna in a step of around 1 degree.
- Clutters are valuable information.
- Lost doppler information.

Decrease the pulse repetition rate.

MIMO (Multiple input multiple out -> angle estimation)

Single input and multiple output (SIMO)

- Signal received by RX2 passes a longer distance of $dsin(\theta)$ than signal to RX1.
- The phase shift between RX1 and RX2 can be denoted as $\varphi = \left(\frac{2\pi}{\lambda}\right) dsin(\theta)$, λ is the wavelength.
- The angle of arrival $\theta = \sin^{-1}\left(\frac{\varphi\lambda}{2\pi d}\right)$.
- Phase difference can only be uniquely estimated in range of $(-\pi,\pi)$ due to the limitation of hardware. The unambiguous FOV is $\theta_{FOV} = \pm sin^{-1}\left(\frac{\lambda}{2d}\right)$.
- Maximum FOV is $\theta_{FOV} = \pm 90^{\circ}$ with $d = {}^{\lambda}/_{2}$.
- The angular resolution can be improved by increasing the number of RXs, N: $\theta_{res} = \frac{2}{N}$.
- Angle estimation is achieved by estimating frequency across N receiver channels.
 Increasing the number of receivers actually is improve the sampling rate of angle-FFT.

MIMO

MIMO modulation/demodulation

TDM (Time division multiplexing)-MIMO

- · Only one transmitter is active at any time
- Sum 2D-FFT matrices over virtual antennas
- C-FAR detection algorithm identifies peaks in this matrix that correspond to valid objects.
- For each valid object, angle-FFT is performed on the corresponding peaks to identify the angle of arrival of that object.
- Prior to applying angle-FFT, a Doppler correction step must be performed in prior to correct for any velocity induced phase change.

BPM (Binary phase modulation)-MIMO

Binary phase modulation chirp sequences with four transmitters

Decoding according to chirps in one block time $S_{a,b,c,d}$ to obtain virtual signals $S_{1,2,3,4}$.

$$S_1 = (S_a + S_b + S_c + S_d)/4$$

$$S_2 = (S_a - S_b + S_c - S_d)/4$$

$$S_3 = (S_a + S_b - S_c - S_d)/4$$

$$S_4 = (S_a - S_b - S_c + S_d)/4.$$

- Modulate the initial phase of chirps over different TXs.
- Phases are either 0° or 180° (equivalent to multiplying each chirp by +1 or -1).
- Simultaneous transmission across multiple TX antennas.
- Demodulate at the receiver side.