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Abstract 

A universal image segmentation framework, which can be applied to various high-resolution automotive radar imagery produced 
by different beamforming strategies, is expected in the radar community to provide robust support to the development of 
autonomous driving. This paper estimates the universality of the segmentation framework, which is developed based on radar 
data produced by the mechanical steer beamforming, by directly implementing it onto another high-resolution radar imagery 
produced by the beamforming strategy of MIMO Doppler beam sharpening (DBS). The comparison of the distribution features 
of two parts of data shows that the return power level shift caused by the resolution difference is the major factor that needs to 
be compensated for the framework transfer implementation. The details of the universal segmentation framework are given to 
show that this can significantly simplify the complicated manual labelling and feature extraction. The segmentation results are 
discussed with the analysis of the performance and the potential future work.     

1 Introduction 

The next generation of cars with the highest levels of 
automation requires the combination of multi-modal sensors 
to perceive the surrounding of the vehicle [1]. The common 
sensors utilized for modern vehicles include automotive radar, 
LiDAR, camera, and ultrasonic sensors. Compared with the 
other sensors, automotive radar is considered as the most 
reliable sensor robust  to harsh weather and bad light 
conditions [2]. The development of mm-wave and low-THz 
radar enables the availability of high-resolution automotive 
radar imagery which provides the full scene representation of 
the driving environment as an alternative to that based purely 
on optical imagery [3-5]. Therefore, achieving the full scene 
reconstruction based on the automotive radar map can provide 
the key information of the passable and impassable regions to 
the path planning in autonomous driving.  
 
Learned from the methods developed on optical imagery, radar 
image segmentation is the solution to identify the passable path 
purely based on radar information. To do this we need a 
customized and universal approach that fit the format of radar 
data and can be extended to various high-resolution 
automotive radar imagery produced by different beamforming 
strategies.  
 
The radar segmentation framework is proposed for the first 
time in our previous publication of [6], which includes the 
supervised multivariate Gaussian distribution (MGD) region 
classification based on the distribution features of radar data. 
The segmentation framework with the MGD classifier has 
been established, validated, and tested on the radar imagery 
collected by mechanically steering FMCW radar (PolaRAD-

79) operating at 79 GHz to understand the feasibility of 
segmentation on automotive radar imagery. 
 
In this paper, we study the universality of the developed 
framework by estimating the feasibility of directly applying it 
to another high-resolution automotive radar map produced by 
a different beamforming approach. The new data is collected 
by MIMO automotive radar with further Doppler beam 
sharpening (DBS) process to mitigate the side-lobe effects and 
improve the imaging resolution [7]. We analysed the 
difference in feature space of two types of high-resolution 
radar imagery - PolaRAD-79 data and MIMO-DBS data to 
understand the possibility of directly delivering the region 
classification without additional data labelling. The estimation 
and segmentation results showed that the framework produced 
based on the features of PolaRAD-79 data can be directly 
utilized for the segmentation of MIMO-DBS data which only 
requires the translational shift of return power levels at the 
input of the classifier according to the difference between radar 
systems. This conclusion is valuable for the automotive radar 
community since the universal method can be extended to the 
segmentation of other high-resolution automotive radar 
imagery without any complicated manual labelling and feature 
extraction processing.  
 
2 Datasets – PolaRAD-79 and MIMO-DBS 

The two high-resolution automotive radar image datasets - 
PolaRAD-79 and MIMO-DBS were used in this work. The 
former is produced by the setup shown in Fig. 1 (a), which 
includes the mechanically steering FMCW radar. The latter is 
collected by INRAS Radarlog [8] with 4Tx-16Rx MIMO 
frontend by the platform given in Fig. 1 (b). The set-up which 
included, both sensor suits included ZED stereo camera, 
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LiDAR, and, in the case of INRAS data collection, the inertial 
measurement unit (IMU) utilized for estimating the real-time 
velocity of the vehicle platform. Parameters of the two radar 
systems are listed in Table 1.  
 
Table 1. The characteristic parameters of radar systems. 

Parameter INRAS Radarlog PolaRAD-79 
Bandwidth  1 GHz 5 GHz 
Start frequency 76 GHz 76 GHz 

Mode of operation MIMO Mechanical 
steer FMCW 

Tx antenna gain 14.4 dBi 30 dBi 
Rx antenna gain 14.4 dBi 30 dBi 
Transmit power 10 dBm 13 dBm 
Range resolution 15 cm 3 cm 

 
All the details of the formation of the PolaRAD-79 dataset are 
given in [6], which includes the raw data collection, the pre-
processing by conducting free space loss calibration, and the 
manual labelling procedure of radar image frames.  
 
The MIMO-DBS automotive radar map is developed in [7]. 
Automotive radars typically use MIMO beamforming to 
resolve the angular position of targets, and the resolution is 
limited by the number and configuration of transmitting and 
receiving elements [9]. DBS is the synthetic technique to 
produce the independent estimation of the target angular 
position [10] based on the platform movement. The strategy of 
DBS is to refine the antenna beam into narrow sub-beams. The 
sub-beams are split by different Doppler shifts caused by the 
radial velocity change under various azimuth angles. The 
resolution of radar imaging can therefore be improved by 
implementing narrowband filters on individual sub-beam 
through the whole beam pattern.  
 

                                      
 
When combined MIMO-DBS  is able  to improve angular 
resolution  and decrease inherent MIMO side-lobe levels [7].  
Based on the MIMO radar map which is produced by 
performing two-dimensional FFT on the single MIMO frame, 
another Doppler FFT is performed in slow time by assembling 
N frames of radar maps to obtain the Doppler map. Samples 
are extracted where MIMO and DBS derived angles overlap, 
to produce a single range-angle map with significantly 
improved resolution and reduced side-lobe levels as shown in 
Fig. 2.  

 
As can be seen from this figure such improvement results in 
excellent contrast between different regions within the map 
(trees, curb, grassy roadside) which is the necessary pre-
requisite of image segmentation. 
 
3 Distribution Feature Analysis  

The segmentation process includes the pre-segmentation stage 
using Canny-edge detection, and the region classification 
using MGD classifier as described in [6]. The physical features 
of returns from different terrain types and objects are based on 
the shape and scale factor of their Weibull PDF and are used 
as the input of the MGD classifier. Importantly choice of 
Weibull distribution is based not on the best fit, but on one 
which can produce better contrast between different classes of 
terrain and objects [6]. Therefore, to validate the transferability 
of the developed image segmentation approach, the Weibull 
distribution feature parameters were extracted and compared 
for both data types – PolaRAD-79 and MIMO-DBS. The 
classes are grass, objects, asphalt, and shadows chosen as a 
required minimum for the path planning. 
 
The Weibull distribution feature parameters obtained from the 
PolaRAD-79 dataset in different range groups are shown in Fig. 
3 [6] as the comparison baseline. The feature parameters are 
obtained by fitting Weibull distribution on the density 
histogram of calibrated and uncalibrated radar data of 
manually labelled regions corresponding to chosen classes. 
The data calibration here means the return power whitening 
over ranges according to the free space loss model as described 
in [6]. 
 
Weibull distribution parameters obtained from the new 
MIMO-DBS dataset is shown in Fig. 4. The return power 
calibration is based on the same free space loss model in [6], 
and the manual labelling of regions on MIMO-DBS maps was 
only used for this analysis.   

(a) (b) 
Fig. 1 (a) The platform for collecting the PolaRAD-79 
dataset. (b) The platform for collecting the MIMO-DBS 
dataset. 
 

Fig. 2 (a) The original MIMO map; (b) the radar map after 
implementation of DBS on (a); (c) the corresponding 
optical imagery. 
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Fig. 3 The Weibull distribution parameters from PolaRAD-79 
dataset [6]. 
 

 
 
Comparing Fig. 3 and 4 we can draw the following conclusions: 
1) For both datasets parameters of classes of objects, grass, and 
asphalt demonstrate a clear contrast.   
2) Both l and k parameters of asphalt and shadows show slight 
differences within the range of 15 m, and merge at longer 
ranges. This can be explained as the lower transmitted power 
and antenna gains of the INRAS Radarlog system than 
PoloRAD-79 system will lead to the shorter range to resolve 
returns from the asphalt above the noise floor  [11].  

3) The Weibull scale parameter l of MIMO-DBS is higher 
than PolaRAD-79, which is similar to Weibull shape k 
parameters:  
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here x is the input variable.  
 

 
If the distribution of return power is only scaled for two 
datasets, the initial ratio factor of !

"
 need to be constant which 

indicates that k will shift along with l. Under this assumption, 
we conduct the following parameter shift according to the 
average power level difference between two radar systems. 
The shifted l parameter of MIMO-DBS is calculated as: 
 

 𝜆()*+ = 𝜆()* − 𝑎                          (2) 
 
where a is the average power level difference between two 
radar systems and 𝜆()* is the original Weibull scale parameter. 
We would like to stress that a can be determined as the power 
level difference of the specific area class such as “objects”, or 
it can be more robustly obtained by searching through a range 
of values to find out the power shift value which can give the 
best segmentation performance. The shifted k parameter can 
therefore be calculated as: 
 

𝑘()*+ = 2!$%&
"$%&

3 ∗ (𝜆()* − 𝑎)                (3) 
 
where 𝑘()* is the original Weibull shape parameter.   
 
The shifted feature parameters are plotted in Fig. 5, which 
approach the feature parameters shown in Fig. 3 as expected. 
This estimation indicates that the region classification model 

(a) 

(b) 

(b) 
Fig. 4 The Weibull distribution parameters from MIMO-
DBS radar maps. 

(a) 

(b) 
Fig. 5 The Weibull distribution feature parameters of 
MIMO-DBS maps after return power shift.  

(a) 
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established based on the PolaRAD-79 data can be directly 
utilized for the MIMO-DBS maps by simple compensation on 
the power level difference. The implementation details will be 
discussed next. 
 
4 Universal Image Segmentation Framework 

According to the analysis in the previous section, we can 
conclude that the MGD classifier is universal to multiple types 
of high-resolution automotive radar maps with return power 
distribution scaling in the pre-processing stage. Therefore, the 
MGD classifier trained using labelled dataset on one radar 
beamformer can be applied directly to the other without the 
necessity to repeat manual labelling and training on another 
dataset.  
 

 
The block diagram of the image segmentation framework is 
shown in Fig. 6. The test automotive radar map is the input of 
the framework, and the segmented radar map is obtained at the 
output. There are two steps related to the distribution feature 
representation of radar data which are the pre-processing and 
the MGD region classification. 
 
The pre-processing stage requires parameters scaling by  Eq. 
(2) and (3), after the radar data calibration to compensate for 
return power difference according to the range.  This is done 
by applying the polynomial range-dependant factor to the 
range profiles within the imagery [6]: 
 

𝑓, = −5.7 × 10$-𝑅. + 0.001𝑅/ 
																																				−0.05𝑅0 + 0.36𝑅 − 26.4                         (4) 
 
where R is the range.  
 
After the pre-processing, the extracted parameters, considered 
as the input features of classifiers of the test data, are expected 
to produce the contrast position in feature space. The feature 
difference between the dataset used for initial supervised 
training, the PolaRAD-79, and the dataset of MIMO-DBS are 
shown in Fig. 7. The color-coded background in Fig. 7 (a) and 
(b) are the surface plot of the pdfs of 2-dimensional MGD 
classifier calculated by the Weibull scale and shape parameters 
of PolaRAD-79 (Fig 7 (a)) and scaled MIMO-DBS data (Fig 7 
(b)) Two circled areas contoured by blue and black represent 
the distribution peaks of area classes of grass and objects, 
shown as yellow and green dots.  The distribution of scattered 
feature points from both dataset approaches to the MGD peaks 
of the corresponding area class. This indicates that the MGD 

classifier given here can accurately describe the distribution of 
the features obtained from various data formats.  

 
The dimension of the MGD model depends on the number of 
the input feature parameters. The MGD model utilized in our 
proposed segmentation framework is four-dimensional with 
the input feature parameters of:  
 

𝑥1 = [𝑘234, 𝜆234, 𝑘2, , 𝜆2, ]                              (5) 
 

where 𝑘234, 𝜆234 are the Weibull shape and scale parameters of 
the uncalibrated data, and 𝑘2, , 𝜆2,  are parameters of the 
calibrated data. The general pdf definition of the n-
dimensional MGD model is: 
 

p(𝑥1) =
%
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where for our case n = 4. Σ is the covariance matrix, and M is 
the vector of the mean values of feature parameters which are 
different for different classes.  
 
For the grass and objects areas, the covariance matrices of 
Σ9:;<< and Σ=>?@,1< are: 
 

𝛴9:;<< = F
9.1 8.8
8.8 19

11.5 8.1
9.3 12.6

11.5 9.3
8.1 12.6

15.3 10.8
10.8 16

F               (7) 

Fig. 6 The block diagram of the universal image 
segmentation framework. 
 

(a) 

(b) 
Fig. 7 (a) The PDF of MGD classifier and the parameters 
obtained from PolaRAD-79 data; (b) The PDF of MGD 
classifier of PolaRAD-79 data and the parameters obtained 
from MIMO-DBS data. 
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𝛴=>?@,1< = F
8.9 −1.2
−1.2 32

12 −1
−4.1 21.6

12 −4.1
−1 21.6

16.3 −2.3
−2.3 20.4

F            (8) 

 
The mean value vectors of feature parameters are: 
 

𝑀9:;<< = [16.6, 87.8, 22.3, 117.6]              (9) 
 

𝑀=>?@,1< = [11.9, 96.6, 15.7, 126.5]            (10) 
 
The MGD classifiers of areas of grass and objects are 
calculated using the above parameters, and the region 
classification of the other high-resolution radar maps can be 
achieved by inputting the feature parameters in the same order 
as Eq. (5). 
 
5     Segmentation Results on MIMO-DBS Maps 
 
The results of segmentation based on MGD classifier trained 
on PolaRAD-79 data and applied to scale MIMO-DBS data 
area shown in Fig. 8 and 9.  
 
The optical imagery, the MIMO-DBS automotive radar map, 
and the segmented maps showed that segmentation results 
correspond to the ground truth and that the drivable areas are 
correctly bounded by impassable regions of grass and object.  
 

 
Some of the confusions between grass and objects are 
observed: 1) the region of A in Fig. 8 (b3) and the region of D 
in Fig. 9 (b3) are wrongly identified as grass due to the over-
segmentation in pre-segmentation. This can be improved by 
optimizing the pre-segmentation and using frame-to-frame 
tracking of regions; 2) the region of B in Fig. 9 (a3) is 

identified as the class ‘object’ due to the fact that narrow gravel 
roadside alongside the road produces a higher power return 
due to the rougher surface than grass area. This problem can 
be addressed by increasing the number of classes in the future.  
 

 
 
Region C in Fig. 9 (a3) is not correctly identified in the 
segmentation is due to the deviation of velocity estimation 
between the left and right sides used for DBS. This will be 
improved by involving the velocity compensation in the DBS 
procedure when the vehicle is cornering. 
 
6 Conclusions 

In this paper, we present the universal segmentation 
framework for high-resolution automotive radar imagery 
which includes the MGD region classification based on the 
distribution parameter features. The universality is estimated 
and discussed from two aspects: 1) the analysis of the 
distribution features of different high-resolution radar imagery; 
2) the feasibility of implementing the framework developed 
based on the PolaRAD-79 data on the MIMO-DBS maps. Both 
feature analysis and segmentation results showed that the 
transfer of the segmentation framework is possible between 
differently generated high-resolution automotive radar 
imagery by simply scaling the return power. It is shown that 
MGD based classifier based on the manually labelled training 
dataset obtained for one radar, can successfully be applied to 
another radar data without the necessity to repeat the tedious 
labelling process.  
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Fig. 8 (a1)-(b1) are the photos of the open road scene; (a2)-
(b2) are corresponding MIMO-DBS radar maps; (a3)-(b3) 
are segmented MIMO-DBS maps. 

Fig. 9 (a1)-(b1) are the photos of the urban road scene; 
(a2)-(b2) are corresponding MIMO-DBS radar maps; (a3)-
(b3) are segmented MIMO-DBS 
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